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Preface 

This final report concerning modeling semiconductor and quartz crystal 
growth is focused on the transport equation of the dopant and of the nutrient 
in neighborhood of the melt/solid and liquid/solid interface. 
We present the weakness of the "stagnant-film" or "diffusion-layer" model 
and using recent developments in the field of periodic material modeling we 
identify new transport equation in the region adjacent to the interface. This 
equation takes into account the interaction between complicated global flow 
patterns and the convective-diffusive dispersion mechanism, which exist in 
the so-called "mushy zone" or "precrystallization region". We assume that in 
this zone we have a periodic structure, which is a weak form of the periodic 
structure of the crystal. If the periodic structure in the precrystallization 
region is no significant i.e. the size of the periodically distributed solid 
inclusions, which are small with respect to the distance between two 
neighbouring inclusions, is smaller than a critical size; then global flow is 
not influenced and the transport equation of the solute is the classical 
convective-diffusive equation except the diffusive term which is more 
refined because a diffusion tensor appears. But if the periodic structure in the 
precrystallization region is significant i.e. the size of the periodically 
distributed inclusions is greater than a critical size; then the flow in mushy 
zone is a Darcy flow and in the new transport equation of the solute we have 
new more refined convective, diffusive terms. It must be noted that these 
new equations do not take into account the interaction of the dopant field 
with the crystal. A kind of interaction appears just in boundary conditions. In 
this context we can think to improve our equations by the addition of a new 
term, which expresses this interaction. 
Concerning the accuracy of our equations we want to point out that we have 
established a convergence result, which provejthat our equations obtained by 
homogenization are an approximation of the equations governing the real 
phenomena. But, in this context it is obviously that in the future it will be 
necessary to have also numerical evidences. 

Timisoara Stefan Balint 
December 1998 



/. On the determination of the radial segregation of dopant in 
the case of semiconductor crystal growth in Bridgman - 
Stockbarger configuration 

1.1     Introduction 

The compositional uniformity of crystals grown from the melt depends 
strongly on the pattern and intensity of flow in the melt and on the shape of 
the melt/solid interface. In the processes such as the Czochralski and floating 
zone methods and the vertical Bridgman-Stockbarger configuration studied 
here, the unequal partitioning of dopant between melt and crystal during 
solidification causes a concentration gradient perpendicular to the melt/solid 
interface. When this interface is planar and the melt is quiescent, except for 
motion   caused   by   crystal    growth,    the   concentration   field   decays 
exponentially with distance into the melt. Curvature of the solidification 
interface  and  convection  in  the  melt,   both  change  the  concentration 
distribution along the interface and alter the dopant level in the crystal. 
The influence of convection on segregation in the growth direction (axial 
segregation) was pointed out by the Burton's et al. analysis [1-3] of the 
effect of crystal rotation on mass transfer. When the crystal diameter is large 
and the velocity field is similar along the radius of the melt/solid interface, 
convection only alters the concentration field perpendicular to the interface. 
Burton et al. analyzed this case and developed an expression for an effective 
segregation coefficient and introduced the notion of an axial "boundary - 
layer" thickness for diffusion-controlled mass transfer. Others 
[4-8] applied the idea of a uniform diffusion-layer or stagnant-film that is 
masking a growing crystal from a well mixed bulk and have determined so- 
called boundary-layer (more appropriately diffusion-layer) thickness without 
any picture for the fluid motion in the melt. Other than Burton, Prim and 
Slichter's original analysis of rotating flow few papers dealing with melt 
crystal growth [9,10] have addressed the exact coupling between the fluid 
flow and mass transfer in a consistent way. 
In many growth configurations, the concept of a uniform diffusion-layer 
yields an over-simplified view of the role of convection in dopant 
segregation [11]. When the flow is laminar and cellular, as in the case for 
many small-scale growth systems and for reduced gravity experiments, 



convective mass transfer is uneven along the surface of the crystal and 
significant lateral segregation results. The coupling between moderate 
convection and lateral dopant segregation thoroughly analyzed for the 
rotationally-driven flows in small-scale floating zones [10,12,13] and has 
been demonstrated for buoyancy-drive convection under microgravity 
conditions [14]. All this studies were of model crystal growth systems with 
planar solidification interfaces. 
Coriell and Sekerka [15] (also see ref. [16]) demonstrated that significant 
radial segregation occurs in systems without convection tangent to the 
crystal surface when the radius of curvature of this interface is the same or 
less than the length scale of the concentration gradient adjacent to the 
interface. Curvature induced segregation was shown to be an important 
contribution to dopant inhomogeneity in capillary growth systems [17-19] 
and may be important in other small-scale crystal growth experiments in 
which convection in the melt has been suppressed. 
We consider the prototype vertical Bridgman - Stockbarger growth system 
presented in Fig. 1. 

melt 

melt/solid 
interface 

A  X3 

T„ 

X, 

crystal 

X, 

R 

<* ► 

Fig.l. Geometry of the prototype vertical B-S system 

The influence of the natural convection governed by the equations 



(l)   -^ + v-Vv = -Vp + Pr-V2 v-Ra-Pr-0-e3 at 

(2) ^ + v-ve = v2e 
dt 

(3)   V-v = 0 

on the dopant dispersion governed by the equation 

(4)   —+ —-v-Vc = V2c 
a     Pr 

was analyzed by C.J. Chang and R.A. Brown in [20]. The calculations 
described here are of the axisymmetric steady state velocity, temperature and 
concentration fields and melt/solid interface shapes. The mathematical free- 
boundary  problem  that  describes  these  variables  is   solved  by  finite- 
element/Newton technique that computes simultaneously the shape of the 
solidification interface, the velocity and pressure fields in the melt and the 
temperature distribution in both melt and crystal. Flow field calculated with 
the finite-element/Newton algorithm are used in a separate calculation of the 
distribution of a dilute dopant within the melt and crystal. The bulk of the 
calculations reported here are for a melt and crystal with thermophysical 
properties similar to those of the gallium-doped germanium system. 
Three distinct types of flow patterns were observed. At low Rayleigh 
numbers (Ra < 10 ) the streamlines were rectilinear and only slightly 
distorted by buoyancy forces. For intermediate values of Ra (103 < Ra < 106) 
a cellular flow developed which was driven by the radial temperature 
gradients established by the mismatch in thermal  boundary conditions" 
between the adiabatic and hot zones. The flow moved upward along the 
sidewall and downward at the centerline of the ampoule. The center of the 
cell was located slightly above the gradient zone and migrated downward 
and toward the sidewall with increasing Ra. Increasing the Rayleigh number 
to 2.6 x 106 led to the development of a weak secondary cell adjacent to the 
melt/solid interface. The outset of the multi-cellular flows marks the start of 
the third type of flow pattern. The motion in the secondary cell next to the 
interface  was  in the  opposite direction to the  main cell  and  led  to 
qualitatively different radial segregation than the flows with a single cell 
which exist for Ra less than 1 x 106. 



The temperature fields show the effect of the Prandtl number in the gallium 
germanium system. For Rayleigh numbers between zero and 1 x 104 the 
thermal fields in both the melt and crystal were essentially the same as the 
field calculated without convection (Ra=0) and were similar to results of Fu 
and Wilcox [21]. Increasing Ra above 1 x 104 caused the isotherms along 
the axis of the melt to compress toward the melt/solid interface by the 
downward fluid motion. By Ra = 5 x 106 the shape of several isotherms 
farthest from the interface inverted from convex to concave at the center of 
the melt. The isotherms in the crystal were unchanged by changing Ra. Also, 
the fact that a large position of the crystal was at the uniform temperature 
0=0.1 demonstrated that the length of ampoule in the cold portion of the 
furnace was sufficient to guarantee that the position of the end of the 
ampoule was unimportant. 
The shape of the melt/solid interface was unchanged by convection for Ra 
between 0 and 10 . For higher Rayleigh numbers, the hot melt moving down 
the axis of the ampoule drove the melt/solid interface deeper into the 
adiabatic region. The changes in interface shape caused by convection were 
not large; even for Ra = 5 x 106 the deflection of the interface was only 6% 
of its mean location. 
Dopant fields were calculated for the velocity field and melt/solid interface 
shapes discussed above for the segregation coefficient k=0.1 and Schmidt 
number Sc=10 similar to the gallium-doped germanium system. The almost 
parallel iso-concentration lines for Rayleigh numbers up to 10 correspond to 
the one-dimensional solidification model. The concentration field was 
deformed at higher values of Ra; at Ra = 1 x 104 the concentration field had 
the beginnings of the uniform core of melt with steeps concentration 
gradients along each boundary, consistent with the boundary-layer model for 
a well-mixed melt. A large amount of radial segregation was present even at 
this level of convection: flow downward along the axis swept dopant from— 
crystal and induced radial segregation across the surface of the crystal. The 
change in concentration across the interface evolved with increasing Ra 
from approximately 1% segregation caused by interface curvature at Ra=0 to 
almost 70% of the mean value 1/k for the worst case of Ra = 1 x 103. The 
radial variation of dopant decreased with the more intense flow motion that 
corresponded to Ra=10 . The maximum in radial segregation with increasing 
convection found here was consistent with calculations of Nikitan for the 
growth of gallium-doped germanium in a horizontal boat. 
The percent radial segregation, defined as Ac=[c(0,h(0))-c(A,h(A))]xl00/k 
reached a maximum for the flow corresponding to nearly Ra=103 and 



decreased for larger values of Rayleigh number. The value of the 
segregation coefficient set the mean concentration in the melt at the interface 
and affected the level of radial segregation in the crystal. The exponentially 
decreasing concentration profile present at low values of Ra extended further 
into the melt for smaller segregation coefficients and made the concentration 
field more sensitive to convection. Consequently the level of segregation Ac 
was higher for lower k. 
Changing the diffusivity of the solute also had a marked effect on the level 
of radial segregation. At high Schmidt numbers and Rayleigh numbers of 
1x10 and above, the isoconcentration curves developed fingers oriented 
parallel to the melt solid interface that corresponded to extremely rapid 
variation in composition within a distance of the same order of magnitude at 
the thickness led to large (over 100%) radial segregation. 
The complicated segregation patterns discussed created doubts as to the 
applicability of the simple "diffusion-layer" or stagnant-film model for 
con-elating axial segregation behavior. Details results for the velocities and 
dopant profile make possible to check this correlation. To do this, radially 

concentration   profiles,   defined   as    c(z) =   |c(r,z)-rdr aveia&eu    ^v^i^wimmv/n    Fiuniv,.3,    ucimcu    as     uizi =   icir 71 • r rir     was 

calculated for different values of Ra, k and Sc. For law Rayleigh numbers 
(0< Ra < 1 x 102), these radially averaged profiles were essentially the same 
as the concentration profiles predicted by one-dimensional models which 
account only for the convection^caused by crystal growth. A region of nearly 
uniform average concentration c(z) = cB developed with increasing Ra. The 

profile for Ra=l x 104 was divided into a region of thickness 5f with steep 
dopant gradient adjacent to the crystal, a zone of uniform concentration and 
a gradient zone caused by the fictitious, inlet condition at the top. These„ 
profiles were reminiscent of the form assumed by a stagnant film modelnd 
suggest the equivalence of 8f with the width of usual diffusion layer. The 
thickness 8f were compared with results of this approach through calculation 
of effective segregation coefficient. The effective segregation coefficient 
appropriate   for  a  true   unsteady  Bridgman   system  with  A=0.25   was 
approximated as keff=cs/cB=l/cB where cs was the dimensionless average 
concentration across the crystal. 

If a diffusion layer of thickness 5 = 5/L existed that separated the crystal 
surface from bulk melt at concentration cB, the effective segregation 
coefficient   keff   would   be   derived   following   Flemings   formula   as 



1      _ _^s_ _K  , or in dimension less form used here 
K-ff — 'eff     cB     k + (l-k)exp(-VL-8/D) 

as keff = k + (l-k)exp(-a-S-Pe-Sc/Pr)' 
Rearranging this yielded an explicit relation for the diffusion-layer thickness 

Values of 5 computed from the above 5 = In 
Pe•Sc•a 

f   '-       1-krff^ 

Vkeff        !"k 

formula with keff calculated from the finite-element results are compared to 
values of 8f measured from the profiles of c(z). In each case, 5 and 5,- were 
of the same order of magnitude but different by as much as a factor of two. 
This result is not surprising. Within the distance 8f from the crystal in the 
finite element calculation, the velocity field was a combination of the growth 
velocity and a contribution from natural convection. These two components 
were of the same order of magnitude and it was the latter component which 
caused the discrepancy between 5 and 8f which led to radial segregation. 
One of the main conclusions of Chang and Brown in the paper [20] 
concerning the steady state is the following: 
"For moderate levels of convection the "stagnant film" or "diffusion-layer" 
model is a gross oversimplification of the interaction between complicated 
flow patterns and the dopant field. Diffusion-layer thicknesses 8 determined 
by the formula 

(5)   8 = — In w Pe•Sc • a 

f k    1-k    ^ -eft 

V^eft       !~k 

and experimental data are, at the best, empirical fits to effective segregation 
coefficient, for the crystal/melt system. The comparison demonstrates that, 
although the radial averaged diffusion-layer thickness determined from the 
finite-element simulations and formula (5) are of the same order of 
magnitude, the actual concentration gradient adjacent to the crystal is far 
from radial uniform. As much 60% radial segregation can exist. Only 
detailed calculations of the exact interaction of fluid flow and dopant profile 
adjacent to the interface can be used to estimate the level of radial 
segregation in crystal. Our study of a prototype Bridgman system gives 
qualitative understanding of fluid flow and dopant segregation in actual 
growth system and will serve as the starting point for more refined 
calculations, aimed at comparison with experiment in well-characterized 
small-scale system". 



Starting from this, we propose a new model in which the 
"precrystallization zone" or "mushy zone" substitutes the "stagnant 
film" or "diffusion-layer" like M.B. Tahar in [22]. Tahar approach this 
solid-liquid mushy zone using a model of a porous media with evolving 
heterogeneity, and adapt a spatial averaging method to derive 
macroscopic equations describing geometry of the dendritic structure as 
well as dispersive effects. For as the "mushy zone" is a thin bed of 
periodically distributed solid inclusions, which are small with respect to 
the distance between two neighboring inclusions (we shall say that the 
concentration is small). 
The diffusion-layer thicknesses 8 are substituted by the "mushy zone" 
thicknesses which can be determined by X-ray diffraction 
measurements. In this way the diffusion-layer or stagnant film masking 
the growing crystal is substituted by a thin periodic porous medium 
bounded below by an impermeable rigid wall which is the melt/solid 
interface. 
If the size of solid inclusions is smaller like the critical size (see [23]) the 
flow in "mushy-zone" is the global flow given by (l)-(3). 
If the size of solid inclusions is critical (see [23]) the flow in the mushy 
zone is a Brinkman flow, determined by the global pressure and 
respecting at the "mushy-zone" and "pure-fluid" interface the Beavers- 
Joseph or Jones modified Beavers-Joseph or Rudriah conditions (see 
[24],[25],[26]). 
If the size of solid inclusions is larger like the critical size (see [23]) then 
the flow in the "mushy-zone" is a Darcy flow, determined by the global 
pressure and respecting at the "mushy-zone" and "pure-fluid" interface 
Rudriah conditions (see [26]). 
The dispersion mechanism of the dopant in mushy-zone is due to the 
diffusion and convection, which exists simultaneously, and is assumed 
that balance each other or convection dominates diffusion. Obviously 
the mechanism takes into account also the existence of some solid 
inclusions. This dispersion mechanism model for the dopant adjacent to 
the interface is more refined as the dispersion mechanism in diffusion- 
layer model as well as the dispersion mechanism described by equation 
(4) and is governed by a new convective-diffusive equation which 
generalize equation (4). 
In the new convective-diffusive equation we use the velocity field the 
melt/solid interface defined by (l)-(3) and a certain periodic 
microstructure similar with the microstructure of the crystal. 



We find also the stationary solutions without radial segregation of the 
new convective-diffusive equation and perturbations with respect to 
these solutions are asymptotically stables. We establish also the optimal 
control for the stationary solutions without radial segregation. 

1.2  The flow in the mushy zone 

For a periodic material QcR3 for which the period is a cubic cell homotetic 

with a small ratio 8 of the unit cell Y = [-1/2, l/2]3c=R3, in which the fluid 
domain YF and the solid on Ys have a smooth boundary T (like in Fig.2.), 
using homogenization method it was deduced a macroscopic model, from 
microscopic processes, assuming that the flow is slow and the size of the 
solid inclusions is of the same order like the size of the cell (low porosities) 

(see [27], [28], [29]). 

Ys 

YF 

Fig.2. The unit cell Y 

In the macroscopic model the flow < v > (x) is given by Darcy's law 

(6) <v>(x) = -K-Vxp\  xeQ 

where K is the permeability tensor defined by the coefficients Ky given by 

(7) K8=,ljv{dy 
I  IYF 

and v{ are the components of the micro velocity fields defined in the unit 

cell Y by the following boundary value problem. 



(«) 

uAyvJ = VyqJ-e"j   in YF 

Vyvj=0 inYF 

vj=0 onT        j = 1,2,3 

vJ and qJ are Y periodic 

e"j  is the unit vector in y: direction 

In formula (6) Vxp° represents the pressure gradient in Q. Numerical 
calculus of the permeability tensor coefficients K;j, solving (8) by finite- 
elements method, was performed by Chiang. C. Mei, Jean-Luis Auriault and 
Chiou-On Ng in the paper [30] and by Cheo K. Lee, Chin-Cheng Sun and 
Chiang C. Mei in [31]. They consider the case when the solid inclusion is a 
Wigner-Seitz grain in the unit cell Y. In this case due to the symmetry, 
Kjj = 0 for i * j and Ku = K22 = K33. Therefore it is sufficient to consider 
only Kn induced by the unit pressure gradient in e, direction. Computation 

JY I |Y I 
have been performed for porosities 7tv = Mr- = 1-^-^-  in the ranae 

|Y| |Y| 

0.2518 < 7Uy < 0.8333 and the results were compared to the values of the 
permeability given by the well known empirical Kozeny-Carman formula 

(9)   k=!        ** Vs 

v-A-s 5   (!-»,)■ 
where Vs is the volume, As is the area of the grain, and   £ is one side of the- 
cube. 

Within the range 0.37 < 7CY < 0.68 for which the empirical formula is based 
on experiments, the results are consistent and in trend with, but fall slightly 
below the empirical formula. Outside this range of porosities, the deviation 
increases. 
It should be noted that, the Kozeny-Carman formula is the best fit to 
experimental data for all grain shapes, but outside of the range of porosities 
0.37 < 7lY < 0.68 is an extrapolation of measured data and may not be totally 
accurate. 
In the paper [31] results were compared to numerical values obtained by 
Zick and Homsey in [32] for uniform spheres of various packings. 
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Discrepancies between the packed spheres and Wigner-Seitz grains appear 
for close packing (low porosity), since particle interaction is affected by the 
geometry most significantly. At higher porosity, the results agree remarkably 
well. 
Other results concerning the permeability tensor coefficients in the case of 
dendritic growth are given in [22] and in general in the case of 
solidifications in [33-45]. 
In the paper [23] Th. Levy studies slow flow of an incompressible viscous 
fluid in an array of a great number of small fixed particles assuming that the 

particle size S and the distance r\ between two neighboring solids (n is also 
the size of the period) are such that s « n « 1. This assumption 
corresponds to low concentration of solid inclusions (high porosity). She 
proves that there exists a critical size for particles, for which Brinkman's 
flow occurs. For smaller sizes solid do not influence the flow and for larger 
particle sizes the fluid flow is governed by Darcy's law. 
In this case it is worthwhile obtaining approximate homogenization formulas 
simpler than the usual ones. This way be done by disregarding the 
interaction between inclusions: the local solutions appearing in the 
homogenization formulas (which are periodic, the periodicity taking into 
account the interaction) become solutions in the whole R3 space (without 
interaction). In this connection, Einstein in 1906 gave a celebrated formula 
for the homogenized viscosity of a dilute suspension of rigid solid spherical 
particles in a viscous fluid. As the general case of non-small concentration 
involves new phenomena such as variable microstructure, anisotropy and 
modification of the inertial terms, it is worthwhile obtaining the Einstein's 
approximation as the asymptotic behavior for small concentration of the 
homogenization formulas (see [46], [47]). 
Returning to the mushy zone where we have supposed that the solid 
inclusions are small with respect to the -distance between two neighboring- 
inclusions according to Levy's paper if the size of the solid particles is 
smaller than the critical size then the particles do not influence the global 
flow, and therefore in mushy zone the flow is the global flow defined by the 
equations 

(lO)   v- V v = -Vp° + Pr V2 v- Ra ■ Pr- 9 • e~3 

(ll) v-ve = v2e 

(12)   Vv = 0 

ll 



where    v = er- —+ e3-—-    is   the   gradient   operator   in   cylindrical 

coordinates. The Prandtl number Pr and the Rayleigh number Ra appearing 
in equation (10) and (11) are defined by 

Pr = ARa = ß.g(Th-Tc).i^. 
ctL a L 

This case corresponds to the case considered in [20] and other papers. 
If the size of the solid inclusions is critical then the flow in the mushy zone 
is a Brinkman flow governed by a Brinkman's law 

(13) uA < v >= Vp° + p. ■ (p • H- < v > 

where cp  is the volume concentration of solid particles and H is the 
translation tensor. 
If the size of solid particles is greater than the critical size then the flow is a 
Darcy flow governed by a Darcy's law 

(14) u-(p-H-<v>=-Vp° 

The permeability tensor K, that appears in critical and supercritical case, is 
expressed in terms of the particles concentrations cp and the translation 

tensor H: K = H"1. 

In subcritical case is not necessary to put coupling conditions but in" 
supercritical case is absolutely necessary to put this kind of conditions in 
order to realize the continuity of the velocity field. In this order we will use 
Beavers-Joseph postulate according to which the slip velocity at the 
permeable interface differs from the mean filtration velocity within the 
porous matrix, and the shear effects are transmitted into the body of the 
material through a boundary-layer region. Across this boundary the velocity 
changes rapidly from this value at the interface to the Darcy's law value 
given by 

riO K'   dP (15J   um = -r- 
|i    dx 

12 



in porous medium (like in Fig.3.). 

A z 

fluid layer 

porous region 

Fig.3. Physical model for Beavers-Joseph slip condition 

Beavers and Joseph also assumed that the slip velocity for the free fluid is 
proportional to the shear rate at the permeable boundary and is related to the 
slip velocity of the exterior flow by an adhoc boundary condition 

(16)  £ 
dz 

= d>.(u-um) 
z=0+ 

where o+ is the boundary limit point from the exterior fluid, and O is a 
constant which depends on the properties of the fluid and the porous matrix, 

but is independent of spatial coordinates. They showed that O = °y 
K' 

where a is a dimensionless quantity depending on the material parameters 
which characterizes the structure of the permeable material within the 
boundary region. Therefore the Beavers-Joseph slip condition at the 
interface can be written as: 

(.7)   ^=i(u-uj 
dz    VK' 

where u and du/dz are evaluated at the interface o+, while um is evaluated at 
some small distance d given by 

/ic7 
(18)   d 

a 
away from the plane z = 0 in porous side. Since the parameter a is obtained 
from a dimensional analysis and is not defined mathematically it needs to be 
evaluated from the experimental data. Beavers and Joseph conducted 
experiments to determine the validity of the above model and reported a for 
three kinds of foametal and two kinds of aloxite matrices (6.5 x 10'10 < K' < 
8.2 x 10* m ). Their data also demonstrated that a is almost independent of 
the fluid viscosity p. (see [48]). Although the Beavers-Joseph condition was 

13 



first presented as an empirical result, a certain amount of theoretical 
foundations was later provided and several experimental investigations 
supported it. In any case Beavers-Joseph condition permits to find the small 
distance d where we make the coupling between the slip velocity and the 
mean filtration velocity with formula: 

(18')   uc =-— (u-um)-z + u       for-d<z<0. 
VK 

In the paper [12] Jones argued that the Beavers-Joseph condition was 
essentially a relationship involving shear stresses rather than just the velocity 
shear, and suggested a generalized form (17) as 
/   x    du    dw       a   / v 

5z + öx ~ Vf7    ~ U m     J°neS"modified Beavers" Joseph condition 

where v = (u, v, w). 

It is understood that u,—,— are evaluated at the interface z = 0+, while um 

is evaluated at some small distance d given by 

(20)   d = 

r dw/   ^ 

IK'      U~Unly 

Taylor in [49] observed that the Beavers-Joseph condition can be deduced if 
the Brinkman flow model is used in a region very close to the fluid-porous 
layer interface while the flow in the bulk of the porous medium is governed 
by Darcy law. The idea was extended by Neale and Nader in [50] who 
showed that for the problem of flow in a channel bounded by a thick porous 
wall, the Brinkman equation yields the same solution ofthat obtained from 

the Darcy equation provided a is taken as (|i7n)1/2, where u/ is the 
effective viscosity for the fluid/saturated porous medium. 
Ross in [51] developed an equation for the average fluid velocities in terms 
of gradients of average pressure and velocities and, indirectly, the geometry 
of the porous interface by considering the flow of inertialles fluid through 
the pores. Using an averaging procedure, he obtained the interfacial slip 
condition for the Beavers-Joseph flow problem as: 

(21)   Uss-£.i + K'.L..4i + K'  "  ^ N 
1^   dx z   dz dz2 ' 

The term of the left hand side and the first two terms on the right-hand side 
of this equation are identical to that in equation (17) except that the first term 
(equation (21)) represents the Darcy flow at the interface z=0 and not at z<0 
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as in the Beavers-Joseph model. Therefore neglecting the second order 
viscous term in (21) and considering the Darcy's flow at z<0 we obtain the 

fit7/ Beavers-Joseph model with a =      A    • Ross employed a scale analysis, to 

show that all the three terms in equation (21) are of equal order-of- 
magnitude, and the second order viscous term must be retained for the slip 
condition to be valid. A generalized slip condition for an anisotropic porous 
medium was presented as: 

(22) Uj=- 
Kj, 

1^ OX; U 
Jjpq 

a*, 
ax, 

+ Ky N JP V2u, 

where Ky = p. • K y and Ky is the permeability tensor and Ljpq , NjP are 

expressed in terms of line and area integrals. 
Note that in the above results, the porous medium is dense and of large 
thickness as compared to the interface boundary layer. 
Rudraiah in [26] examines the effect of porous layer thickness on slip 
velocity at the interface, particularly when the porosity is large. Modified 
Beavers-Joseph expressions were obtained for two cases: a) porous layer 
bounded below by a thick layer of static fluid, and b) porous layer bounded 
below by an impermeable rigid wall. For case b) the slip condition was 
found as: 

(23) 
du 

dz 

a-V/2 
£• X'-U, 

Kj       |_sinh(5-h') 
^ + (u-um)-coth(5h1) 

where h' is the thickness of the porous layer, 5 = (ä,'-K)~
1/2

, and A.' is a- 
viscosity parameter. Equation (23) reduces to the Beavers-Joseph condition 
as h'-»+oo and a comparison with equation (17) shows that X' = a2, which 
agrees with the finding of Weale and Nader in [50] if A,' can be identified as 
the viscosity ratio JI'/JLI. It is understood that in equation (21), u, du/dz are 
evaluated at the interface z = 0+ while um is evaluated at some small distance 
d given by 

(24)   d = 
VK 

a 
coth(5-h') + 

s-a u m 1 
1-1 

inh(8 • h')   u - u sin m 
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Returning to the mushy zone, this is located in the region 
Q = {(x,,x2,X3)eR3|0<x^+x2

2<R2,0<x3 <h'} and the fluid layer in 

the region Q' = {(x,,x2,x3)e R3 | 0 < x2 + x2 < R2,h'< x3 < Lh}. The 

permeable interface is located on the level x3 = h\ Due to the small thickness 
and large porosity of the mushy zone we will use Rudraiah slip condition for 
assuring the continuity of the velocity field. 
Once global velocity field v and pressure field p° in the melt are determined 
from the two phase natural convection problem described by equations (10), 
(11), (12) in super critical case we use the pressure field p° in order to find' 
with formula (14), the Darcy's flow < v>. With this flow <v> and the 
global velocity field v using (22) we find the small distance d where we 
make the coupling between the global flow v and Darcy's flow <v>. 
Therefore we will have the Darcy flow just in the region 0 < x3 < d < h\ 

1.3     The transport equation of the dopant in mushy zone when 
convection and diffusion balance each other 

Using homogenization method in the case when convection and diffusion 
balance each other (at the global level) we can obtain (see [52]) the 
following transport equation for a solute in a periodic porous media: 

(25) 
ac 
a 'H-MP' i=i j=i 

d2c 

öXjdXj 

Intfiis equation c = c(t,x) is the solute concentration, <Vj> = <Vj>(Xl, x2, x3), 
i - 1,2,3 are the components of the fluid velocity given by Darcy's law and" 
the coefficients Dy are the components of the diffusion (dispersion) tensor 
These components are given by the formula 

(26)   Dii=D 
f >\ 

dy 
( 

= D J    IY, JYi/Xi'nJ 
da 

In the above formulas D is the diffusion (dispersion) coefficient of the solute 
and Xi is the solution of the following boundary value problem 
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(27) 

AyXi=0 inYF 

n-VyXi=-nj    onT 

Xj    is Y periodic 

<Xi >=TTT [xidy = 
Y    J 

0 
Yp 

for i= 1, 2, 3. 

Multiplying equation AyXj =0 by Xj and integrating on YF we obtain for 
the components Dy the following formula 

(28)   Dij=D Sy-j^j/Vx£-VXjdy 

and consequently Dy is symmetric (Dy = Djj). 
In addition we have 

(29)Dij=D.<VBi,VBj>=D.^jt?i-fidy 

where B; = -%j - y( and consequently the tensor Dy is positive. 
If Ys is symmetric to any coordinate planes then Dy = 0 for i * j and 
consequently the dispersion tensor is diagonal. 
When the solid inclusions are small with respect to the distance between two 
neighbouring inclusions using results from [46] and [47] in [53] was proved 
that for symmetric solid inclusions we have 

( 

(30) Dg^Dl-Y + JLfxiiiida 
Yc   * 

V i  =>ir j 

where <p is the volume concentration of solid inclusions and is assumed to be 
small. The functions Xj are solutions of the external Neumann problem: 

(31) AXi=0   inR3\Ys 

(32) AXj •ii = -ni   onT 

5U 

17 



In [54] we have find the transversal (Dn=D22) and longitudinal (D33) 
diffusion coefficients for the prolate spheroids. They are plotted as function 
of the excentricity on the following figures. 

Fig.4. 
Therefore the dopant transport in mushy zone is given by (25) where Dy are 
given by (30) and < v; > are the component of the velocity field of the 
global convection flow, Brinkman's flow or Darcy flow. 
Steady state solutions of equation (25) are given by equation 

(33) ^i^-t-ih-,. d2c 
1

       i=l  j=l i=l 
1J SxjdXj 

This equation generalizes the steady state mass balance equation 

(34)   ^(v.Vc)=V2c 
Pr 

used in [20] for the determination of the dopant field in the melt. In equation 
(34) the Schmidt number Sc = u/3) and the Prandtl number Pr = u/aL. 9) is 
the diffusivity of Ga in Ge, aL is the thermal diffusivity in liquid. Boundary 
conditions used in [20] for solving (34) are 

C(ez-N)-(l-k)c;  0<r<A,  z = h(r) (35)   N-Vc = 

(36) 

(37) 

Pr 

(c-1) 
dc _ Pe • Sc 

dz~    Pr 
dc 
— = 0; r = 0,A,  0<z<l 
or 

0<r<A,  z = 0 
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where z = h(r) represents the location of the melt/solid interface, A = R/L, R 
is the radius and L is the length of ampule, N is the unit vector normal to 
the interface, Pe = Vs-L/aL is the Peclet number, k is the segregation 
coefficient of Ga in Ge. 
Equations (35), (36) express conservation of mass at the melt/solid interface, 
and the fictitious "inlet" at the melt end (z = 0) of the ampule respectively. 
Equation (37) is the no flux condition valid at the centerline and sidewalls of 
the ampule. 
Once the velocity field in the melt and the shape of melt/solid interface were 
determined from the two phase natural convection problem: equations (34) - 
(37) are reduced to a linear set to be solved for concentration distribution 
through the melt. 
Returning to equation (33) boundary conditions for solving this equation can 
be formulated starting from the location of the mushy zone. 
We have already supposed that the mushy zone is located in the region 

(38) n = |x1,x2,x3)|xf + x\ <R2 and 0<x3 < h'} 

and from (35) it follows that we have equation 

(39) ^-=-^-§1(1-k)c,    0<r<R,    x3=0 

which expresses conservation of mass at the melt/solid interface. 
From equation (37) which expresses the no flux condition at the centralline 
and sidewalls it follows 

(40) — = 0, r = 0,R; 0<x3<d 
dr 

Equation (36) must be substituted by a coupling condition at the level x3 = d 
between  the  concentration  field   c   defined  by  (34)  -  (37)  and  the- 

concentration field c which satisfies (33), (39) and (40) for x3 < d. We can 
realize this coupling putting 
(41) c(x1,x2,d)=c(x,,x2,d) 

Once the velocity field in "mushy zone" are determined (from equations 
(10) - (12) or from (13) or from (14)) and c determined from (34) - (37) we 
can solve (33), (39), (40), (41) and we have the concentration distribution in 
mushy zone. This dopant field adjacent to the melt/solid interface is a new 
more rafined approach of the real dopant field in this region. 
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1.4  The transport equation of the dopant in mushy zone when 
convection dominates diffusion 

Using homogenization method, in the case when convection dominates 
diffusion at global level, we can obtain (see [30]), [31] and [55]) the 
following transport equation for a solute in a periodic porous media Q. 

(AI\    
dc ,    l   V1             dc     J^   d  (x^ (42)   — + y <v:> =>     > D- 

Y   i=l 

f3 V 
In the above equation c = c(t,x) is the solute concentration, 
<Vj> = <Vj>(xi, x2, x3), i = 1, 2, 3 are the components of the velocity field 
and the coefficients Dy are the components of the diffusion (dispersion) 
tensor. These components are given by the formula 

(43)   Dn=D 5ij+M0dy-^ViZjdy 1
   'YF  

Ji M YF 

In the above formula D is the diffusion coefficient of the solute and 
Xi = Xi (x, y) is the solution of the following boundary value cell problem 

(44) 

AyXi-v-VyXj =Vi-<Vi>   inYp 

n-VyX^-nj   onT 

Xi is Y periodic 

<%i>=KH Jxidy = 0 
i   J 

v is the velocity field defined by 

(45) v(x,y)=-£|£-vJ' 

where vJ are defined by (8), p° is the pressure field in Q and <v;> = <v;>(x) 
is given by 

(46) <vi>(x) = ilfvi(x,y)dy. 
Y    J 

'     'YF 

For a constant gradient pressure field Dy are constants and due to the identity 
3      3 

1=1 j=l °*i   °x-j      i=1 j=1 l 

dzc 

Sx;-SXJ 
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in equation (42) we can use only the symmetric part Dj- = —(DJ: +DJJ) of 

the diffusion (dispersion) tensor. This symmetric part is given by one of the 
following three equivalent formulas: 

(48)   D?:=D J(xiVj+XjVi)dy 

(49) DÜ=D 5ii + -T1 IJ     2Y 
jkini +Xjni)dy-^-- J(xiVj + XjV;)dy 

(50) Dy=D idy 

where Bj is defined by 
(51)   Bi—Xi-Yi- 
If the mean flow is directed along the x3 axis then Dy is diagonal with two 
independent components that are the longitudinal DL and transverse 
dispersivities DT; DL = D33 and DT = Dn = D22 (see [17], [18] and [26]). For 
any other flow direction in the plane Oyiy2, there are four nonzero 
independent dispersivity coefficients Dn, D22, D33 and D!2 = D2i; D13 = D3j 
= D23 = D32 = 0 (see [17], [18] and [26]). 
To calculate the dispersion tensor, one must solve the canonical cell problem 
defined by (44). Lee Sun and Mei in [18] have shown that the cell boundary 
value problem for convective diffusion of heat can be recast as a variational 
principle, the case for solute transport being a special case. Computed values 
of longitudinal and transverse dispersivity coefficients DL and DT, for a 
cubic array of Wigner-Seitz grains, for Peclet number up to 300 for DL and 
200 for DT, and for two porosieties 7tY~= 0.38 and 0.5 are shown in the- 

following figures. 
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To conform with experimental literature the abscissas are the Peclet numbers 
defined in terms of the mean flow velocity averaged over YF only, i.e. 
<v,>.X/7CY-D = Pe/7rY.  In  Fig.5(a), the  longitudinal  dispersivity  is'also 
compared with the measured data [57] for simple cubic packing of uniform 
spheres and the calculations [58] for a simple cubic lattice of uniform 
spheres with nY = 0.48, 0.74 and 0.82. The results for nY = 0.48 by Koch et 
al. [59] based on an approximate analysis for dilute concentrations are also 
included. All are in qualitative agreement for DL. From the numerical results 
for n - 0.38 and 0.5 we see that for small Peclet numbers where molecular 
diffusion is dominant in microcell, the diffusivity is greater for the larger 
porosity. The reason is that the cross-sectional area through which a passive 
solute can diffuse increases with porosity. It is always less than unity in the 
diffusion-dominated regime (at microlevel) since the presence of solid grains 
reduces  the  diffusive  flux  of solute.  For large  Pe  numerical  results 
concerning DL for Wigner-Seitz cell as well as those by Salles et al. for~ 
umform spheres, are consistent with the experimental measurements [58] 
and the analytical theory for dilute spheres [59], all showing that DL 

increases with (Pe) , when the mean flow is parallel to a lattice axis. Recall 
from [59] that if the flow is inclined to a lattice axis, DL may vary linearly 
with Pe. In contrast to the case of small Pe, the dependence on porosity is 
now reversed, and the dispersivity increases with decreasing porosity 
Heunstically this is because the velocity gradient in the pores increases as 
porosity decreases and therefore enhances microscale mixing. 
The transverse dispersivity DT computed for Wigner-Seitz grains is plotted 
in Fig.5(b) for Pe < 300. The qualitative trend is the same as DL except that 
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it is less than DL by roughly two orders of magnitude. Mauri [60] also finds 
analytically for a dilute lattice of uniform spheres that DT is proportional to 
(Pe)2, for small Pe and is eight times smaller than DL. In contrast Koch et al. 
in [59] predict that DT remains almost constant in Pe for very large Pe. There 
are no reliable measurements for DT for a regular array of spheres. Some 
experimental data on DT for natural granular media are shown in the 
following figures (see paper [61] - [65]). Although scattered, each individual 
data set exhibits linear dependence on Pe as DL. 
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Steady state solutions of equation (42) for a constant gradient pressure field 
are given by 

3 -,_ 3     3 1 dc (-)   £Z<v,>-£-£lD 
Y   i=l i=l  j=l 

a2c 
ÖXjÖXj 
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where D» is given by one of the three equivalent formulas (48), (49), (50) 

and < V; > are the components of the velocity field. 

Equation (52) generalizes the mass balance equation (34) used in [20] for the 
determination of the dopant field. 
For solving equation (52) we can use the boundary conditions (39) (40) and 
(41). 
Once velocity field in mushy zone is chosen we can solve the boundary 
value problem (52), (39), (40) and (41) finding the dopant distribution in 
mushy zone. This dopant distribution adjacent to the melt/solid interface is a 
more rafined approach of the real dopant field in this region. 

1.5 Stability and segregation 

Solving boundary value problems (33), (39), (40), (41) or (52), (39), (40) 
and (41) we obtain dopant distributions which are maybe in a better 
agreement with experimental data and reflect the real radial segregation. But 
the main question, which rests to be solved, is: in which way we can 
obtain in a steady state regime a semiconductor crystal without radial 
segregation? 
In our opinion in order to obtain in a steady state regime a semiconductor 
crystal without radial segregation, the dopant concentration in the mushy 
zone most be independent on t, x,, x2. In this sense see also [66] concerning 
experiments conducted on board LDLG vehicles: "the dopant field close to 
the growing surface must be uniform prior to low-g growth". A dependence 
on xb x2 may lead to segregation. This means that in mushy zone the 
concentration c of the dopant may depend only on x3, c = c(x3). 
Using this kind of functions in the dopant transport equation we find that c 
satisfies the equation. ~ 

(53)   Ity.D33-4=<V3>   dC 

dxf J      dx: 

Now if <v3> depends on Xl and x2 then equation (38) has only constant 
solutions. This means that in the mushy zone we must have a constant 
concentration of the dopant. This corresponds to the Griffin and Motakef 
recommendation made in [66] but does not satisfy the boundary condition 
(39). If <v3> depends only on x3 we have several solutions for the equation 
(53) and to each of these corresponds a dopant distribution in mushy zone, 

24 



without radial segregation.  Obviously we must choose solution which 
satisfies boundary condition (39), (40) and (41). 

In particular if in mushy zone we have Ky = 0 for i * j and dp°/dx3 = 0 then 

<v3> =. 0 and we have 

(54) c0(x3)=k1+k2x3 

where k,, k2 are two constants to be find from (39) and (41). The boundary 
condition (40) is satisfied for any constants k! and k2. 
If in a steady state regime the dopant concentration in mushy zone is given 
by a solution of equation (53) then this rests the same all the time, till the 
regime does not change and we will obtain a semiconductor crystal without 

radial segregation. 
Now the main question is: starting from a certain steady state regime 
and from the corresponding dopant distribution in which "way" we 
succeed to realize a new steady state for which the dopant distribution is 
given by a solution of equation (53)? 
In order to give a partial answer to this question we will try to explore the 
region of attraction (region of stability) of a solution of equation (53). This 
means that for a solution c0 = c0(x3) of equation (53) we search perturbations 
which tend to 0 for t tending to +oo. If, for a solution c0, the class of this kind 
of perturbations is sufficiently large then we can try to find a perturbation 
such that the sum of c0 = c0(x3) and the perturbation at t=0 coincides with the 
dopant distribution corresponding to the starting steady state. If we succeed 
to find such a perturbation then we have find the "way". 
For the beginning, we consider perturbation of the form 

(55) c1(x1,t) = c1(x1)eCTt 

and we replace c in the transport equation (25) by 

(56) c = c0(x3)+c1(x1)-eGt. 

We find that C] = c^xO satisfies the equation 
,2. 1 dcj     ^      d C! 

(57)   c-Cl+ — <v1>-—- = Dn 
7W dx, dxf ly u^i 
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If <v,> depends on x2 and x3 then c, = 0 is the only solution of equation 
(57). But ci = 0 is not a real perturbation. If <vj> depends only on x, then 
equation (57) has several solutions. In particular, for any real a and s > 0 
equation (57) has solutions with the following property: 

(58)   sup|c,(xj<s 

where the supremum is considered on the domain 0 < x, < R. This means 
that the above considered solution c0 = c0(x3) is not stable with respect to any 
perturbation of the form (55). 
If we impose to the perturbation (55) to satisfy the boundaiy condition (40) 
then we obtain 

(58) -^- = 0   forx^Oandx^R. 
QX j 

For the Sturm-Liouvill problem (57), (58) there exist an and cln such that 
0 > a, > a2 > a3 > ... > -a>, cln = cln(x,) * 0 and an, cIn satisfy (57), (58). This 
means that the concentration profile c0 defined by (53) is asymptotically 
stable with respect to the perturbation 

(59) _cln(x1,t)=cln(x1>
CT«t. 

Now if we study the stability of the same concentration profile with respect 
to a perturbation of the type 

(60) c2(x2,t) = c2(x2).e
Gt 

we can establish similar facts. 
If we investigate the stability of the concentration profile with respect to a 
perturbation of the type 

(61) c12(x1,x25t) = c12(xl5x2)-eCTt 

we will find other perturbations with respect to which the dopant 
concentration profile c0 = c0(x3) is asymptotically stable. 
This stability results prove that there are time dependent regimes for which 
the dopant distribution in mushy zone tends to a steady dopant distribution 
profile without radial segregation. This kind of facts are encouraging but 
don't mean great things until we have not find the whole  family of 
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perturbations with respect to which the dopant concentration profile c0 = 
c0(x3) is asymptotically stable. 

1.6  The optimal boundary control for a solution without radial 
segregation 

Let us  consider in the  flow domain M  (the  melt) the  natural 
convection governed by the equations: 

(62)   - Pr- V2 v + (vV) v + Vp =- Ra • Pr- 6 • e3 

(63) -v2e + v-ve = o 

(64) V-v = 0 

and the dopant dispersion governed by the equation 

(65) -Pr-V2c + Sc-v-Vc = 0. 

We assume that the boundary conditions are the followings: 
(66) v = 0     onSM 

(67) -^ = a(e-x)     ondM 
on 

(T is the temperature of surrounding medium) 

(68) -T=r = Y-c-n3      onSM n3=n-e3. 
dn 

The aim is to find the boundary controls x, which give us a desired, 
field of concentration cd uniform in neighborhood of the melt/solid interface. 
This means to minimize the cost functional defined by 

1   f 2 

(69)    J(c,x) = - ||c-cd| dx 

M 

We will present some results which are related and can be used in 
order to solve the above boundary control problem. 
Abergel and Casas in the paper [67] consider a more general system as (62)- 
(64) with boundary conditions similar to conditions (66)-(67) and solve 
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boundary control problems which consist in minimizing turbulence caused 
by the heat flux on the boundary i.e. to minimize the cost functional J(V,T), 

involving the turbulence, defined by 

(70)   j(v,x)=I j|Vxv|2dx + - Je-fds. 

M ÖM 

Capatina and Stavre in [69] consider also a more general system as the 
system (62)-(64) with the boundary conditions (66)-(67) and solve the 
boundary control problems which consist to find the control T which give as 
a desired field of temperature 0d; i.e. to minimize the cost functional- 

(7i)  J(e,T)=iJe-ed|
2dx 

M 

In [70] Capatina and Savre give a numerical treatment of the above 
boundary control problem. Finite element approximation of the optimality 
system is defined. The convergence of the proposed algorithms for solvino 
the discrete problem is proved. The analysis of the numerical results and 
their physical meaning are discused. 
Finally Capatina and Stavre in [71] solve an optimal control problem in 
b.convective flow; "biconvection" being convection caused by a 
concentration gradient, not by a temperature gradient. They find the mean 
values a of concentrations which lead to a given concentration field cd Thev 
consider the cost functional 

(72) J(a,c) = ljc-cd|
2dx-3a2 

M 

and formulate the optimal control problem as follows: 
(73) min{j(a,c)|(cc,c)eT} 

where T is the nonempty, weakly closed set: 

(74) T = {(a, c) G [0, oo) x H' (Q) 3 v such that (v, c)satisfies (62) - (64)j 

The physical relevant term in (72) is  I Jjc-c/dx which provides an 

M 

estimate of the difference between the component c of (v,c), and a given 
configuration cd of concentration. 
This result is very interesting in the case of CdZnTe crystal growth for 
which the solute Rayleigh number is Ras=2.02xl08 (for GeGa the solute 
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Rayleigh number is Ras=0) and consequently equation (62) must be replaced 
by the equation: 

(75)   - Pr- V2 v + (vv) v + Vp =- (Ra • Pr- 0 + Ras • Pr- c)e3 

1. 7 Summary and Recommendation 

1. By a synthesis of the results concerning the mass transport in porous 
media we have identified two transport equations (25) and (42) which 
generalize the connective-diffusive mass transport equation (4) used in [20] 
and in general for the determination of the dopant field. 
2. Locally, in the precrystallization zone, which can be physically localized, 
equations (25) and (42) describe with more accuracy the dispersion of the 
dopant due to the structure which already exists in this region and the 
interaction between complicated global flow patterns and the convective- 
diffusive mechanism which exists simultaneously in this region. Equation 
(25) describes the dispersion process when convection and diffusion balance 
each other, equation (42) describes the process when convection dominates 
diffusion. 
3. Solving numerically boundary value problems (35), (39), (40) and (41) 
respectively (52), (39), (40) and (41) for Ga in Ge we hope to obtain better 
agreements, like Chang and Brown in [20], with experimental data, in the 
case of steady state regime. 
4. For this reason we recommend the implementation of this transport 
equation in M.A.S.T.R.A.P. computational model. 
5. It must be noted that equations (25) and (42) do not take into account the 
interaction of the dopant field with the crystal. A kind of interaction appears- 
just in boundary condition (39). In this context we can think to improve 
equations (25) and (42) by the addition of a new term which expresses this 
interaction. Something like the terms which express absorption and reaction 
in equation of Hornung and Yager in [52]. 
6. The stability calculus made for the steady concentration profiles without 
radial segregation suggests that rotating the ampule around the longitudinal 
axis we can reduce <v3> and obtain a quasi Couotte flow in mushy zone, 
reducing in this way the radial segregation. 
7. The optimal boundary control calculus is just a beginning and suggest in 
how way we can reduced the radial segregation. 
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2. On the determination of the concentration of the solute in 
the case of crystal growth by hydrothermal method 

2.1    Introduction 

We consider the prototype vertical hydrothermal system for obtaining quartz 
single crystals presented in Fig. 1. 

Cold 2ÜHÜ       0 

T, O 

zone 

ho: -,'jono 

ooooooooo 

0 seeds 

'O 
° heatiiip 
0" coils 

_ quartz 
-g-""' pulicryst. 

O 
O      heating       L 
Jy/    coils 

Th    T(C) 

a) autoclave b} temperature distribuliüu 

Fig.l. Geometry of the prototype vertical hydrothermal system 

Using the transport model of solutes in a porous medium participating 
in a dissolution reaction in general not in equilibrium; developed by Knaber, 
Duijn and Hengst in [72]; for the lower region, in the porous bed, if the 
charge distribution is constant, we find travelling waves. The travelling 
wave in fact exhibits a sharp dissolution front and is obtained in a nearly 
explicit manner for two spatially one-dimensional flow regimes with 
constant water content, bulk density, pore velocity q and diffusion 
coefficient D. Also for the limit cases of equilibrium reaction or no 
dispersion, travelling waves are obtained under the same conditions, but 
with different qualitative properties (see also [73]). It must be noted that the 
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spatial domain is assumed to be large due to that solutions describe the 
behavior for large flow domain. 

Chen, Prasad, Chatterjee and Larkin in a recent paper [74] since the 
dissolution and growth process is very slow neglect the effect of dissolution 
and growth and consider that in the lower region (in porous bed) the. flow is 
a Darcy-Brinkmann-Forchheimer flow model. Their study focuses on the 
flow and temperature fields without nutrient transport. They use the 
following nondimensionalized governing equations in the lower region 
(porous region): 

(1) Vu = Sm 

(2) I.^ + I(üV)- = -Vp + Gr-e-e,+VAVü-f -1       ^ 
s   dt     s s v 

(3) se- — + n-ve = -v(Rkve) W dt Pr       k 

where: ü is the dimensionless velocity; Sm the mass source term; s the 
porosity; p the dimensionless pressure, Gr = g-ß-R -(TH - Tc)/ vf is the 
Grashof number; g the acceleration due to the gravity; ß isobaric expansion 
coefficient; R radius of cylindrical autoclave; TH and Tc hot and cold 
temperature; respectively vf kinematics viscosity; 0 = (T - Tc)/(TH - Tc) 
dimensionless temperature; A = |Wn viscosity ratio; Da = K/R Darcy 
number; K permeability of porous matrix; Fs = b/R Forchheimer number; b 
Forchheimer coefficient; Se = (Cp)eff/(Cp)f specific heat ratio; Pr = (v/a)f 

Prandtl number; Rk = k^g/k ratio of thermal conductivity; a thermal 
diffusivity. 
The flow and temperature dynamic governed by these equations correspond- 

to an isotropic porous media. They develop a three-dimensional algorithm 
based on the curvilinear finite volume technique and a non-staggered grid 
layout to simulate the flow and heat transfer in a typical autoclave system. 
At low Grashof numbers an axisymmetric flow pattern and at high Grashof 
numbers a three-dimensional flow pattern is predicted. The study is also 
extended to study the outset of oscillatory flow with a variation in the porous 
bed height. In the upper region (cold region) Chen, Prasad, Chatterje and 
Larkin use a system which describe the natural convection without the 
presence of the seed, governed by the equations: 
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(4)   — + (vV)v = -Vp + PrV2v-Ra-Pr-9-e, 
at ' 

(5) ^ + v.ve = v2e 
at 

(6) Vv = 0 

They use the same three-dimensional algorithm based on the curvilinear 
finite volume technique and a non-staggered grid layout to simulate the flow 
and heat transfer in the cold region. 
These results, for the first time, depict the possible flow patterns in 
hydrothermal system that can have for reaching consequences on the growth 
process and crystal quality. 

In order to see these consequences is necessary to consider the 
nutrient transport equation in homogeneous media: 

/_\    dc    Sc  _ „ 
(7) +__.v.Vc = V2c 

a     Pr 

and to transpose it in a porous media for the hot zone (lower region of the 
autoclave) and to analyze the accuracy of equation (7) in the neighborhood 
of the seed. This analysis is also important because the repartitioning of the 
nutrient in this zone influence the quality of the grown crystal. In this 
context the 'diffusion-layer" model introduced by Noyes and Whitney based 
on a simplified form of equation (7) in the neighborhood of the seed, which 
importance in crystal growth from solutions has been stressed by Nernst and 
which was used by several authors for "flat" or "rough" interfaces, it seems 
to be a "gross oversimplification" of the interaction between complicated _ 
flow patterns and solute field. Only detailed calculations of the exact 
interaction of fluid flow and solute profile adjacent to the interface can be 
used to estimate the segregation in crystal (see [20]). 
Starting from this also for the vertical hydrothermal growth system we 
propose the substitution of the "stagnant film" or "diffusion layer" by 
the "precrystallization zone" or "mushy zone". 
This zone is a thin bed of periodically distributed solid inclusions, which 
are small with respect to the distance between two neighboring 
inclusions. The diffusion-layer thickness is substituted by the mushy 
zone thickness, which can be determined. In this way the diffusion-layer 
or stagnant fdm masking the growing crystal is substituted by a thin 
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periodic porous medium bounded below by an impermeable rigid wall 
which is the fluid/solid interface. 
If the size of solid inclusions is smaller like a critical size (see [23]) the 
flow in "mushy-zone" is the natural convection given by (4)-(6). 
If the size of solid inclusions is critical (see [23]) then the flow in the 
mushy zone is a Brinkman flow, determined by the global pressure and 
respecting at the "mushy-zone'V'pure-fluid" interface the Beaves- 
Joseph or Jones modified Beavers-Joseph or Rudriah conditions (see 
[24], [25], [26]). 
If the size of solid inclusions is larger like the critical size (see [23]) the 
flow in "mushy-zone" is a Darcy flow, determined by the global 
pressure and respecting at the "mushy-zone'V'pure-fluids" interface 
Rudriah conditions (see [26]). 
The dispersion mechanism of the nutrient in mushy zone is due to the 
diffusion and convection, which exists, simultaneously in this periodic 
porous medium. The dispersion mechanism takes into account the 
existence of solid inclusions. 
This dispersion mechanism of the nutrient in the neighborhood of the 
interface is more refined as the dispersion mechanism in diffusion-layer 
model as well as the dispersion mechanism described by equation (7) 
and is governed by a new convective-diffusive equation which generalize 
equation (7). In the new convective-diffusive equation we use the 
velocity field defined by equation (4)-(6) or the Darcy flow determined 
by this velocity field and a certain periodic micro-structure similar with 
the micro-structure of the crystal. We find stationary solutions without 
segregation for the new convective-diffusive equation and perturbation 
with respect to this solutions are assymtotically stables. We establish 
also the controlability of the stationary solutions without segregation. 

2.2. Porous media based nutrient transport in hot zone 

In the following we will describe an algorithm for the determination of 
the transport equation of the nutrient in the case when the porous medium in 
the hot zone is periodic, the solid obstacle is symmetric and convection- 
diffusion balance each other: 
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1. Let be L (L - hL, Fig.2. pg.23. paper Chen et al.) the size of the porous 

medium which is divisible into periodic cubes Q of dimension i 
presented on the Fig.2. 

dQ 

Q  =Q-Cö 

Fig.2. 

co is the solid part; Q' = Q - co is the fluid part; dco is the boundary of or 8Q 
is the boundary of Q. ' 

The solid part co is assumed to be symmetric with respect to each coordinate 
plane. It is also assumed that s = I /L « 1. 

2. In dimensionless variables y = x/ßthis cube is the unite cube Y presented 
inFig.3. 

dY 

Fig.3. 
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The fluid domain YF and the    solid one Ys have a common    smooth 
boundary I\ 
3.       In the unite cube Y we have to solve the following 3-D boundary 
value problems 

AXi=0 inYt 

(8)   Vxi-n = -ni    onr    i = 1,2,3 
Xi    is Y periodic 

I Xidy=0 

where: n is the external unit normal to the solid boundary T; 
n = (n1,n2,n3); the condition that Xi is Y periodic means that we have: 

Xi(-l/2,y2,y3)=xi(l/2,y2,y3)xi(y1-l/2,y3)=Xi(y1,l/2,y3) 

xi(y1,y2-
1/2)=xi(yi»y2'1/2)   i = 1,2.3. 

4. We compute   Du defined by 
f \ 

(9) D;=D 1 + W\ilrni •n,-d(j 

\ 

i = 1,2,3. 

r J 
5. The nutrient transport equation will be 

(10) *+±.vc.v=yD;.^ 
dt      7t„ i=i      "    ÖX? 

where: c = c(t,x) is the concentration of the nutrient, v = v(x) is the velocity 
field of the fluid flow in porous region (find by Chen et al.). 

7lY = is the porosity. 

6. If the solid inclusions are spheres then D*! = D*22 = D3 33- 

If the convection is strong and dominate diffusion the above algorithm must 
be modified as follows: 
3'. In the unite cube Y we have to solve the following 3-D boundary value 

problem: 
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inY, 

inY. 

uAyv
J=Vyq' 

(11) Vyv
J=0 

vJ=0 onT 

vJ andqJ are Yperiodic 
e~j is the unit vector in Yj direction j = 1,2,3. 

4'. For x in the hot zone we have to compute the velocity field v(x,y) 
defined by 

(12) v(x,y) = -t *-.y, 
J=l ax 

where p = p(x) is the pressure field obtained by Chen et al. for this region. 
5'. For x   in the hot zone   we have to take the average < v >=< v > (x) 
defined by 

(13) <v>(x)=-lj-v(x,y)dy. 
|Y| y? 

Probably this will be something very close to the velocity field v(x) 
obtained by Chen et al. for the region. 
6'. For x in the hot zone we have to solve the following boundary value cell 
problem 

A
yXi-<v>-Vyxi =vi-<vj >  inYF 

(14) n-Vyxi=-nj   onT 

X, is Y periodic 

JX|dy = 0 

where: < v >=< v > (x) was obtained at 5' ~ 
Vj = v;(x,y) are the components of v(x, y) obtained at 5' 
Xi = Xi(x>y) is unknown. 

7'. For x in the hot zone we have to compute Dy defined by 

(15)   Dy=D 
|Y|r Y    YF 

8'. The transport equation in hot zone will be 

(16)   ^ + -Lvc-<v>=£ 
3  d (3 

dt       7C, i=l ÖX.. 
YD 

dc 

dx 
>j 
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9'. If in hot zone the pressure gradient Vp is constant then Dy obtained at 7' 
are constant and in the transport equation obtained at 8' we can use only the 

symmetric part Dy =-(D;J +DJ;) of the diffusion tensor. This symmetric 

part is given by 

(17) D;J=D 8, +-T-T J(x, ■nj +X) -n,)ly--— j(Xiv. +xjVj)d; 
9Y  J ' ' 9 V 

and the transport equation becomes 

(18)    $ + -Vc<v>=ti:D-      ^ 

y 

<3t     7iY i=i j=i    u   <9x(dx 
i     s 

2.3. The flow in the mushy zone 

Therese Levy in the paper [23] studies slow flow of an incompressible 
viscous fluid in an array of a great number of small fixed particles assuming 
that he particle size s and the distance rj between two neighbouring 
solids are such that e « r| « 1. This assumption corresponds to low 
concentration of solid inclusions. She proves that there exists a critical size 
for particles, for which Brinkman's law occurs. For larger particle sizes the 
fluid flow is governed by Darcy's law and smaller sizes solids do not 
influence the flow. 
According to Levy's paper if in the mushy zone the size of solid inclusions 
is subcritical then the steady flow in mushy zone is the global convective 
flow in cold zone defined by the equations: 

(19) (vV)v = -Vp° + Pr V2v - Ra • Pr- 9 • e, 

(20) v-V9 = V:0 

(21) Vv = 0 
where the Prandtl number Pr and the Rayleigh number Ra are defined by 
Pr = u/aL, Ra = ß-g(Th - Tc)-L

3/ctL-u. 
If the size of the solid inclusions is critical then the flow in mushy zone is a 
Brinkman flow governed by a Brinkman's law: 
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(22) n • A < v >= Vp° + |i • <p -H- < v > 

where <p  is the volumic concentration of solid particles and H is the 
translation tensor. 
If the size of solid inclusions in mushy zone is supper critical then the flow 
in mushy zone is governed by Darcy's law 

(23) u-(p-H-<v>=-Vp°. 

We note that in subcritical case is not necessary to put coupling conditions 
but in supercritical case is absolutely necessary to put this kind of condition 
in order to realize the continuity of the velocity field. In this order we can 
use Beavers-Joseph postulate and Rudraiah slip conditions (see T241  T251 
[26]). V      L    J' L    J' 

Once global velocity field v and pressure field p° are determined from 
equations (19), (20), (21), in super critical case we use the pressure field p° 
to find, with formula (23), the Darcy's flow < v >. With the above Darcy's 
flow and the global velocity field v using Rudraiah slip conditions at the 
mushy zone/pure fluid interface we find the small distance d away from this 
interface in porous side where we make the coupling between the global 
flow v and Darcy's flow < v >. 
As following assume that the mean flow in mushy zone is directed along the 
Xi axis. This means that <v2> * 0 and <v2> = <v3> = 0. 

2.4 The transport equation of the nutrient in mushy zone when 
convection and diffusion balance each other 

Using homogenization method we can obtain the following transport 
equation for the solute in mushy zone 

(24) !+-L£<Vi>.A=^D...^ 

In this equation c = c(t,x) is the solute concentration, <v;> = <Vi>(x), 
i = 1,2,3 are the components of the fluid velocity in mushy zone given by 
(19)-(21) or (22) or (23) and Da are the components of the dispersion tensor. 
It is understood that equation (24) concerning the case when convection and 
diffusion balance each other and 7rY is the porosity related to the volumic 
concentration q> of solid particles by the relation TCY = 1 - (p. 

38 



For symmetric solid inclusions we have 

( m } 
(25) D|J=D l-cp + JLjx .nida5B 

I        |ys|r ) 
where the functions X\ are solutions of the Neumann problem 
(26) AX, =0 inR3\Ys 

(27) Vx, •n = -ni onT 

i = l,2,3 (see [53]). 
Steady state solutions of equation (24) are given by 

(28) -ij:<v,>.|u£iD,,j^. 

This equation generalizes the steady state mass balance equation 

(29)   ^(vVH) = V=5 
Pr 

used for the determination of the solute field. 
In equation (29) Sc represent the Schmidt number Sc = u/D and Pr the 
Prandtl number Pr = u/aL. 
Boundary condition for solving equation (28) can be formulate starting from 
the location of the mushy zone. We will assume that the crystal is located in 
the region Qi = [-L,/2, U/2]x[-L2/2, L2/2]x[-L3/2, L3/2], the ±x3 direction is 
the    growth    direction    and    the    mushy    zones    are    located    in 
Q; =[-L, /2,L, /2]X[-L2 /2,L2 /2]X[L3 /2,(L, /2)+8] and 

Q-=[-LI/2,L1/2]x[-L2/2,L2/2]x[(-L3/2)-8-L3/2]. 

For symmetrical reasons we will consider only a part of the mushy zone Qf 
and we will assume that we have 

(30)   A = ^(l_k).c 
öx3        Pr J 

for x3 = L3/2 and (x,, x2)e[-L1/2, L!/2]x[-L2/2, L2/2] 

which express conservation of mass at the fluid/crystal interface. 

On the rest of the boundary of the mushy zone Qj" we put a coupling 
condition between the concentration field c defined by (28) and the 
concentration field c defined by (29) assuring the continuity. 
Once the velocity field in mushy zone is determined we can find the 
concentration field c satisfying equation (28) and the above boundary 
conditions. This nutrient transport equation in the neighborhood of the 
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crystal is a new more refined approach of the real nutrient transport in the 
region. 

2.5 The transport equation of the nutrient in mushy zone when 
convection dominates diffusion 

In the case when convection dominates diffusion and the pressure field has 
constant gradient in mushy zone we have the following transport equation 
for the solute: 

(3D   *+^E<v,> a 71 Y   i=i 

de 3    3 r52r 

(see [67]). In this case the components of the dispersion tensor depend also 
on the velocity field. 
If the mean flow is directed along the Xj axis, what was assumed, then Dy is 
diagonal with two independent components, that are the longitudinal DL and 
transversal dispersivities DT; DL = Du and DT = D22 = D33. In the case of 
small concentration of spheroid solid inclusions Mauri in [75] obtained the 
following numerical results: 

0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.3        1 

Eccentricity 

Fig.4a. Longitudinal diffusivity in fixed beds of prolate spheroids as a function of the eccentricity 
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Fig.4b. Transversal diffusivity in fixed beds of prolate spheroids as a function of the eccentricity 
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Fig.5a. Longitudinal diffusivity in fixed beds of oblate spheroids as a function of the eccentricity 

41 



a.oos 

0.0O5 

0.004 

0.C03 

0.002 

0 00 

Fig.5b. Transversal difftisivity in fixed beds of oblate spheroids as a function of the eccentricity 

Also Mauri in [60] finds analytically for a dilute lattice of uniform spheres 
tiiat DT ,s proportional to (Pe)2 for small Pe and is eight time smaller than 

Therefore in our case equation (31) becomes 

(32)   J+±.<Vl>.|L = Di4 + D/*c    *V 
*  " dx,       ax     T dt    TL 

Steady state solutions of equation (32) are given by 

(33)    J-<Vl>.^UD 

dx\    dx]) 

7t 

dc 
dx 

^2c     ^ rd2c    d2c^ 

V dx 
+ 

dx\j 
Equation (33) generalizes the mass balance equation (29) used for the 
determination of the solute field. 

Iqn^on {ll) °an bG SOlVed USing thC SamC b0Undaiy conditions Iike for the 

Once velocity field in mushy zone is determined we can find the 
concentration field c satisfying equation (33) and the corresponding 
boundary conditions. p ö 
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2.6 Stability and segregation 

For obtaining a single crystal in a steady state regime, the solute quartz 
concentration in the precrystallization zone must be independent on t, xl5 x2. 
An important dependence on these variables may lead to a dendritic growth. 
This means that in the neighborhood of the seed the concentration c of the 
quartz may depend only on x3. Using this type of function in equation (33) 
we find that c satisfies 

(34)   D1 
d^c 

dx? 
= 0. 

The general solution of equation (34) is 
(35) c0(x3)=K1+K2x3 

where Ki, K2 are constants. 
The constant K2 is determined by the boundary condition (30) and satisfies 

(36) K2=^(l-k).(K, 
Pr 

.,+K2 A) 
Therefore we have 

Pe-Sc 

(37) 

and 

K2 = Pr 
(1-k) 

1- 
L^ Pe-Sc 

~2      Pr~~ 

•K, 

(38)   c0(x3) = KI 1+- 

(1-k) 

Pe-Sc 

Pr 
(1-k) 

1 '- 
L,   Pe-Sc 

X: 

(1-k) 
2      Pr 

We will analyse the stability of a solute quartz distribution in mushy zone 
defined by (34). This means that for (38) we search perturbations which tend 
to 0 for t tending to +oo. The reason is to find time dependent regimes which 
are able to connect a given dopant distribution in mushy zone with the 
distribution (38). 
For the beginning we consider perturbations of the form 

(39)   c1(xl5t) = c1(x1>
ot. 

Substituting (39) in (32) we find 
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(40)   DL^--L 
dxr     % 

dc 
<vi >■- ^i 

dx 
-GC, =0 

and we find that c0(x3) given by (38) is not stable with respect to any 
perturbation of the form (39). 
If we impose to c,^) the condition 
(41) c1(-L1/2) = cI(L1/2) = 0 
then we obtain the following inequality for a: 

(42) q<-    <V'>2     . 
4(nY)2DL 

From (40) and (41) we obtain also that 

(43)   cffo.t^Kf.sin 
2 mi ,«r*l  .caB.t    n = 1A3>_ 

where crn is given by 

(44)   an = 
1 

4-D, 

< v, >' 

_(TTY)
2 

■ + 
16-D? -7u2-n2 

L 
n = 1,2,3,... 

and oci is given by 

(45)   «,= 
< Vj > 

2-7tY-DL 

The concentration profile defined by (38) is asymptotically stable with 
respect to the perturbations (43). More than that, these solute quartz 
distributions are asymptotically stable with respect to the perturbations of 
the form Cj = Ci(xbt), which satisfy the perturbation equation 

(46)   _L + — <v, >._1 = D, a TT^ 

d2c, 

3x, 5x; 'Y -i c*4 

and has the property that at the initial moment t = 0 could be expanded as: 

(47)   c1(x1,0) = ^Kn.sin 

n=l 

2nrc 
x{ |-ea'Xl 

Next we study the stability of the quartz distribution given by (38) with 
respect to perturbations of the form 

(48)   c2(x2,t)=c2(x2).e<*. 

In this case is also stands that the distribution c0 = c0(x3) given by (38) is not 
stable with respect to any perturbation of the form (48). 
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But if we impose again the spatial periodicity 
(49)   c2(-L2/2)=c2(L2/2) = 0 
it turns  that the concentration profiles  c0 = c0(x3)  given by (38)  are 
asymptotically stable with respect to the perturbations: 

(50)   c^(x2,t)=K^-sin 

where CT„ are given by 

2mu 

V ^2 

x- eCT"£ 

(51)   °n=- 
4V-n2 

•D- 

The stability with respect to the perturbation of the form 

(52)   c3(x3,t)=c3(x3)-eot 

is treated on a similar manner, reaching the conclusion that there are 
asymptotically stable with respect to the perturbations: 

2nxc 
(53) c5(x3,t)=K3

n-sin 

where an are given by 

(54) c„=-±^.D 

(x3-h + L3/2) e^1 

Li 
T 

and h is the thickness of the mushy zone. 
If we investigate the stability of the solute quartz distribution given by (38) 
with respect to the perturbation of the form 
(55) c(x1,x2,t)=c12(x1,x2)-eCTt, which satisfies 
(56) c12(-L1/2,x2)=c12(L1/2,x2)=c12(x1-L2/2)=c12(x1,L2/2)=0 

we find that the distribution c0 = c0(x3) given by (38) is asymptotically stable 
with respect to the perturbations: 

(57)   cmn(xlJx2,t) = Kjn-K5.sin 
2m7c 

sin 

where a,™ are given by 

1 
(58)   amn = 

4Dr 

<Vl>
2    \6n2-m2-Dl 

7Uy '1 

2n7c 

vL2 

4n2n2 

, e
alxl   . e

CTmn't 

Dn 

Finally, if we investigate the asymptotic stability of the quartz distribution 
c0 = c0(x3) given by (38) with respect to a perturbation of the form 

(59)   c(x1,x2,x3,t)=c(x1,x2,x3)-e< .crt 
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we  conclude  that  they  are  asymptotically  stable  with  respect to  the 
perturbation 

(60)    c(x1,x2,x3,t)-K Km    n-n 
2   "K3 sin 

2£n A 
■Xi •sin 

2ni7t 

V ^2 
x 

sin 
2n7t 

LL3 

(x3-h + L3/2) 

where crlmn are defined by: 

1 

e
arxl   .g^Imn 

(61) CTlmn ~~" 
4D, 

<Vj > 

7T- 
■ + 

16n2t2D2
L 4n2m2 

■DT - 
47i2n2 

"IT D- 

The stability results obtained till now, could create the impression that the 
distribution c0(x3) given by (38) is stable with respect to any perturbation. 
For the reason for which we make this study this would be good but 
unfortunately this is not true. We showed that, generally speaking, for any 
a > 0 and s > 0 there exists a perturbation Cl(xbt) = c^Oe* such that for 
t = 0 we have sup|c, (x,0) < s. In fact, this was the reason why we have 

reduced the family of the perturbation of the form Ci(xi,t) = ctfxOe01 and we 
have considered only perturbations for which we have 
c^-Li/2) = Ci(Li/2) = 0. It must be noted that the vanishing condition of 
Ci = Ci(x!) in -Li/2 and IV2 could not be substituted only by a periodicity 
condition. 
In the problem of the stability of the solute quartz distribution c0 = c0(x3) 
with respect to perturbations of the form (55), the vanishing condition on the 
margins |x2| = L2/2 (c12(x1,-L2/2)=c12(x1,L2/2)=0) can be replaced 
with a periodicity condition c12(x1}-L2/2) = c12(xl9L2/2), but we must 
conserve the vanishing condition on the margins " 
|x1| = L2/2(c12(-L2/2,x2)=c12(L2/2,x2)=0). 

In a similar way we can prove that the quartz distribution c0 = c0(x3) given 
by equation (38) is asymptotically stable with respect to the following 
perturbations: 

(62)   cn,^(xi,x2,t)=K{1.sin 
2n7T 

vL, 

rsh^fe-z.)i -i 
ea'x' -y 

^n.xt 

sh^ez>x2-sh^i 
2 2 

»22*2 

where n = 1,2,3,..., yeR', y * 0, XeR'; X < 0; Kf GR'; 
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Jt>- 
4D, 

<v,>2     167t2D? 
+ —^- 4 '1 

J Zl,2=+- 
_ -x. 

Dn 
-; <*!.= 

<Vj > 

2TIY -DL 

CTn,A. = " 
1 

4D, 
<vt >2     167t2-n2-D2 

7Ci '1 

-X 

2nn \ 
■x, 

v Li     y 
(63)    Cn,y(xl»x2't)=Kr "Sin 

where n = 1,2,3,..., yeR', y * 0; Kj1 eR*; a, = 

1 

e«.xi .y.e5»1 

<Vj > 

2TTYDL 

Gn = 4D, 

<v,>2     167r2-n2-D2 

+ k. 1 

7i; 

(64)   cn^y(x,,x2,t)=K|1-sin 
2n7t      * 

V Li      7 
e"'A' • y ■ cos ß2L2^ cosß2x2 -e <Vr* 

where n = 1,2,3,..., yeR', y * 0, XeR'; X > 0; Kf eR'; 

al = 
< V, > 

27CYDL 

CTn,X =~" 4D, 

<v,>2     167t2-n2-D2 

+ z - 1 

TZy 'I 

X. 

The perturbation (62) corresponding to the value Xc given by 

(65)   Xc=- 
1 

4D, 

<v,>2     167t2-D? 
+ ■ —- 

i 

^l^ Jl 

is critical in the sense that for the values of X smaller than Xc the distribution 
(38) of the solute quartz is not stable with respect to the perturbations (62). 
Also in the case of perturbations of the form c(xu x2, x3, t) = c(xb x2, x3)-e

crt 

the vanishing conditions on the boundaries |*2| = L2/2 and x3 = h - L3/2, x3=h 

can be replaced  by periodicity conditions,  maintaining the vanishing 
conditions on the boundary kl = Z, 12. 
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2. 7 Conclusions 

1. We have identified transport equation, which generalizes the convective- 
ditiusive mass transport equation used in general in crystal growth for the 
determination of the solute field. 

2' Sy h" mUShy ZOne theSC eqUations describe *e di^P^sion of the 
solute when convection and diffusion balance each other respective when 
convecon dominates diffusion. These equations take into account*" 

InTcated. "I h rn ^ eXiStS ln mUShy ZOne> the interacti™ b <ween 
melrm1n£;h-a,reg°oWnPattemS "* ** —*«W dispersion 

3- T^ z^Xrequa,ions we hope to °btain teto *"« 
4' MÄSTRTP ? reCr,men? 'h^^P'^-ntation of these equations in M.A.b. l .K.A.P. computational model. 

5. It must be noted that these equations do not take into account the 
interacts of the solute field with the crystal. From this poTn of view 
these equations can be improved. 

6. The stability calculus suggests that there are a lot of time dependent 
^mes, which tend to a steady state uniform distributed concen^atn 

7. The, optimal boundary control calculus, presented for Bridgman- 
Stocbarger growth, suggest in how way we can reduced the sejSten 
in hydrothermal growth system also segregation 
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